МЕТОДЫ ПРИНЯТИЯ УПРАВЛЕНЧЕСКИХ РЕШЕНИЙ

Содержание

Понятие управленческого решения и их типы
Способы принятия управленческих решений
Последовательность принятия решений
Моделирование в практике принятия управленческих
<u>РЕШЕНИЙ</u>
Математические модели принятия решений
Однокритериальные модели принятия решений при

МАТЕМАТИЧЕСКИЕ МОДЕЛИ ПРИНЯТИЯ РЕШЕНИЙ ПРИ ПОЛНОЙ НЕОПРЕДЕЛЕННОСТИ

ОПРЕДЕЛЕННОСТИ И СТОХАСТИЧЕСКОЙ НЕОПРЕДЕЛЕННОСТИ

МАТЕМАТИЧЕСКИЕ МОДЕЛИ ПРИНЯТИЯ РЕШЕНИЙ В УСЛОВИЯХ КОНФЛИКТА ИНТЕРЕСОВ

Математические модели принятия решений при партнерстве

Математические модели принятия решений при многих критериях

Понятие управленческого

Под ситуацией принятия решений понимается совокупность характеристик, отражающих:

- •полноту знаний менеджера о возможных последствиях принятия решений;
- •наличие определенных ресурсов в организации;
- •необходимость учитывать сторонние или внутренние интересы;
- •повторяемость условий, в которых требуется принимать решение.

В реальной практике управления можно выделить следующие типы управленческих решений:

- •типовые или запрограммированные решения;
- •аналоговые решения;
- •креативные решения.

Понятие управленческого

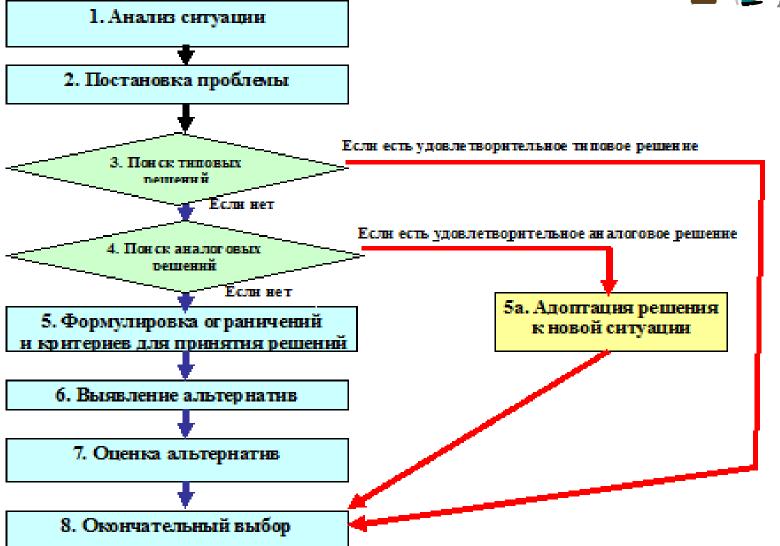
Типовое решение предполагает наличие у менеджера определенного алгоритма (программы) выбора альтернативы, среди возможных.

Аналоговые решения обычно принимаются в сравнительно нечасто встречающихся ситуациях. Характерной чертой аналогового решения является попытка видоизменить (адоптировать) и скомбинировать из одного или нескольких типовых алгоритмов новый

Креативные (или незапрограммированные) решения предполагают создание нового, нестандартного алгоритма выбора и действий

Способы принятия управленческих решений

- Можно выделить три "чистых" подхода к принятию решений менеджерами:
- интуитивный выбор;
- выбор на основе здравого смысла;
- рационалистический выбор
- •Интуитивный выбор это решение сделанное на основе ощущений, которые имеются у менеджера.
- •Способ выбора решений на основе здравого смысла обусловлен знаниями и опытом принятия решений в сходных ситуациях, возникавших ранее.
- •Рационалистический выбор предполагает принятие решений на основе оценки ситуации без опоры на предшествующий опыт, а исходя за счет вновь сделанной оценки альтернатив и возможностей организации.



- 1. Анализ ситуации. Ситуация считается проблемной в двух случаях:
- а) не достигнуты ранее поставленные цели и следует внести изменения либо в сами цели, либо в способы их достижения;
- б) появилась потенциальная возможность улучшить параметры достижения цели
- 2. Постановка проблемы. Проблема должна быть конкретизирована за счет определения факторов, вызвавшие возникновение проблемы. Для этого проводится сбор дополнительной информации
- 3. Поиск типового решения. Во многих случаях постановка проблемы приводит к осознанию того, что подобная проблема уже возникала в прошлом, и были найдены достаточно эффективные способы ее решения.

- 4. Поиск аналоговых решений.. В случае, когда ранее многократно принимались решения по сходным ситуациям, менеджеру обычно рекомендуется сформировать аналоговое решение созданное на основе использования элементов и логики решений, принятых ранее
- 5. Формулировка ограничений и критериев. Ограничения определяются из возможностей организации наличных материальных, финансовых, трудовых и временных ресурсов. Критерии оценки альтернатив формулируются исходя из целей существующих у организации
- 6. Выявление альтернатив. В идеале нужно выявить все множество альтернатив, которое позволяло решить проблему при сформулированных ограничениях., .

- 7. Оценка альтернатив. При оценке альтернатив должны учитываться как положительные, так и отрицательные последствия реализации каждой из альтернатив. Оценка альтернатив производится в соответствии с выбранными критериями принятия решений.
- 8. Окончательный выбор. Окончательный выбор решения производится на основе сопоставления оценок полученных разными альтернативами.
- 9. Реализация решений. Объяснение и убеждение работников в правильности принятого решения и объяснение их роль в его реализации. Выделение необходимых материальных и финансовых ресурсов. Организационное обеспечение принятого решения. Создание системы контроля исполнения принятого решения

- 7. Оценка альтернатив. При оценке альтернатив должны учитываться как положительные, так и отрицательные последствия реализации каждой из альтернатив. Оценка альтернатив производится в соответствии с выбранными критериями принятия решений.
- 8. Окончательный выбор. Окончательный выбор решения производится на основе сопоставления оценок полученных разными альтернативами.
- 9. Реализация решений. Объяснение и убеждение работников в правильности принятого решения и объяснение их роль в его реализации. Выделение необходимых материальных и финансовых ресурсов. Организационное обеспечение принятого решения. Создание системы контроля исполнения принятого решения

- 10. Обратная связь. В этой фазе производится
- Контроль исполнения
- Оценка реальных результатов принятых решений, сопоставление их с прогнозировавшимися.
- Оценка реальной эффективности принятого решения
- При малой эффективности решения его коррекция
- Занесение эффективных решений в базу типовых управленческих решений

Моделирование в практике принятия управленческих решений

Модель - это представление объекта, системы или идеи в некоторой форме, отличной от самой целостности

Выделяют три типа моделей:

физические - представляющие уменьшенные или увеличенные копии реальных объектов; Применительно к практике управления в качестве физических моделей обычно выступают деловые игры

аналоговые - представляющие исследуемый объект аналогом, который ведет себя также как реальный объект, но выглядит совершенно иначе; К аналоговым моделям применительно к управлению следует отнести различные методы направленных (управляемых) дискуссий.

математические - представляющие описание объекта и его поведения в виде совокупности математических и логических выражений.

Выделяют два основных класса математических моделей:

Имитационные (*дескриптивные*) - описывающие поведение организации, технологического процесса и т.д. при реализации определенного управленческого решения и в определенных условиях внешней среды;

Нормативные - задающие процедуру выбора наилучшей альтернативы среди множества допустимых вариантов.

Процесс построения математической модели включает следующие этапы:

- 1. Постановки задачи определение ограничений, критериев, зависимых и независимых параметров в вербальной (словесной) форме.
- 2. Формализации описания постановки задачи в виде определенного набора математических или логических выражений, создание алгоритмов поиска наилучшей альтернативы (для нормативных моделей) или расчета параметров (для имитационных моделей)
- 3. **Верификации** проверки модели на адекватность реальным процессам и полезности ее при принятии управленческих решений.
- 4. Применения использование модели для подготовки и принятия управленческих решений;
- 5. Модернизации и корректировки изменение описания модели по результатам ее применения.

Математические модели различаются в зависимости от уровня определенности, с которой можно прогнозировать результат. С этой точки зрения выделяют:

детерминированные модели — описывающие принятие решений в условиях полной определенности, когда для каждого отдельного зависимого параметра известно как он изменится при вариации влияющих на него факторов; *Стохастические модели (в условиях риска)* - предназначенные для принятия решений в условиях, когда изменение каждого отдельного параметра при вариации влияющего на него факторов подчиняется известному вероятностному распределению.

Модели полной неопределенности - предназначенные для принятия решений в условиях, когда известны возможные границы изменение каждого отдельного параметра при вариации влияющего на него факторов, однако вероятностное распределение не известно.

Модели ранговой неопределенности - предназначенные для принятия решений в условиях, когда известны экспертные мнения о возможной вариации факторов

Для нормативных моделей существенными при классификации являются

Число критериев принятия решений - однокритериальные и многокритериальные модели принятия решений Число участвующих в формировании ситуации сторон: модели исследования операций и теоретико-игровые модели. Характер взаимодействия между сторонами при формировании ситуации — бескоалиционные и коалиционные игры

Число	Знание	Одно лицо,	Несколько лиц, определяющих	
критериев	состояния	определяющее	ситуацию	
	среды	ситуацию	Условия	Условия
			конфликта	сотрудничества
	Определен-	Задачи	Теория	Теория
	ность	математического	бескоалиционных	кооперативных
		программирования	игр	игр
Однокритер иальные		Задачи	Теория	Теория
	Риск	стохастического	стохастических	стохастических
		программирования	игр	кооперативных
				игр
	Неопреде-	Принятие решений	Теория	Теория
	ленность	при полной	бескоалиционных	коалиционных
		неопределенности	игр	игр
Многокритериальные		Задачи	Теория	Кооперативные
		многокритериальной	многокритериаль-	игры с
		оптимизации	ных бескоалици-	нетрансферабель-
			онных игр	ной полезностью

7

Однокритериальные модели принятия решений

Однокритериальные модели принятия решений при полной определенности обычно формулируются следующим образом:

- Максимизировать (или минимизировать) некоторый функционал **F**, отражающий критерий принятия решений, на множестве допустимых альтернатив **D**. В формульном виде эта задача может быть поставлена как
- **F**(**X**) → max
- X ∈ D
- где X допустимая альтернатива.

•

Однокритериальные модели принятия решений

 Типичным примером однокритериальных задач, являются задачи линейного программирования В наиболее общем виде задача линейного программирования выглядит следующим образом:

```
\sum_{i} \mathbf{F}_{i} \mathbf{X}_{i} \Rightarrow \max
\sum_{i} \mathbf{A}_{ij} \mathbf{X}_{i} <= \mathbf{B}_{j}, j \in 1: M
\mathbf{X}_{i} =>0, i \in 1: N
```

- где **F**i- значение i-ой компоненты линейного функционала (например, цена i-го продукта);
- **А**іј іј-ый элемент матрицы (например, удельный расход јго сырья для производства одной единицы і -го продукта)
- **В**ј ј-ый элемент вектора ограничений (например, предельно допустимый расход ј-го вида сырья за период)
- **X**i i-ая компонента вектора переменных (например, выпуск i-ой продукции за период)

Типовые задачи линейного программирования решаемые в крупных фирмах

Название задачи	Укрупненная постановка задачи		
Укрупненное	Составление графиков производства, минимизирующих		
планирование	издержки, с учетом основных ресурсных ограничений		
производства			
Планирование	Определение объема и ассортимента продукции,		
ассортимента	максимизирующего прибыль (доход) с учетом		
изделий	ограничений на потребности в ресурсах		
Маршрутизация	Определение технологического маршрута для изделия,		
производства	минимизирующего издержки (или время) с учетом		
	ограничений на издержки и производительность		
	оборудования		
Оптимизация	Определение способов раздела заготовок,		
расхода материалов	минимизирующих расход сырья, с учетом необходимости		
_	соблюдения условий комплектности		
Календарное	Составление календарных графиков производства,		
планирование	минимизирующих издержки, с учетом основных		
	ресурсных ограничений		
Планирорование	Составление графиков отгрузки, минимизирующих		
отгрузки продукции	издержки (максимизирующих прибыль), с учетом		
	потребности торговых точек в продукции		
Планирование	Определение графиков развозки с учетом минимизации		
транспортировки	издержек и потребности получателей		
Планирование	Определение наилучших точек размещения производства		
местоположения	с учетом минимизации затрат на транспортировку сырья и		
новых точек	готовой продукции при ограничениях на возможности		
	поставки сырья и потребление продукции		
4			

Решение задач зависит от того, какой выбор осуществляется

- 1) Однократный;
- 2) Многократный марковский
- 3) Многократный не марковский.

Однократный выбор предполагает выполнение одно из двух:

- •задача решается только один раз и в дальнейшем ее решать не собираются
- •в результате принятого решения ситуация может измениться настолько радикально, что с большой вероятностью повторных выборов не будет

В остальных случаях можно считать, что мы сталкиваемся с ситуацией многократного выбора.

Выбор считается **марковским**, если в результате принятого решения качественного изменения в ситуации после реализации решения не происходит.

При однократном выборе находится альтернатива, имеющая наибольшую вероятность быть наилучшим. Во многих случаях подобную задачу можно рассматривать как поиск альтернативы X, наилучшей при состоянии среды, соответствующей моде распределения **Ym**. Таким образом, задача формулируется как: максимизировать (или минимизировать) значений функционала **F**, отражающий критерий принятия решений, на множестве допустимых альтернатив **D** при заданной на множестве возможных состояний **S** моде **Ym**, т.е.

 $F(X, Ym) \rightarrow \max$

 $X \in D$

где X - допустимая альтернатива.

При многократном немарковском выборе, а также при многократном выборе с ординальными критериями (т.е. функциями, имеющими ранговую шкалу), рекомендуется использовать так называемый *медианный принцип*.

В соответствии с этим принципом для каждого альтернативы X состояния из множества S упорядочиваются по своей предпочтительности. Это упорядочение мы будем обозначать как S(X,F). Медианой M(X) на множестве S(X,F) называется такое состояние, для которого вероятность выбора состояний более предпочтительных, с точки зрения альтернативы X, и менее предпочтительных имеют одинаковую вероятность $F(X,M(X)) \Rightarrow \max$

 $X \in \mathbf{D}$

При многократном марковском выборе, в качестве критерия оптимальности можно рассматривать математическое ожидание значений функционала F на множестве состояний среды S при заданном на нем вероятностном распределении P.
В формульном виде эта задача может быть поставлена как

$$\int_{\substack{Y \in S \\ X \in \mathbf{D}}} \mathbf{F}(X,Y) * \mathbf{p}(Y) dY \Rightarrow \max$$

где X - допустимая альтернатива, Y - возможное состояние, $\mathbf{p}(Y)$ плотность распределения вероятностей, соответствующая
вероятностному распределению P.

Математические модели принятия решений при полной неопределенности

Принцип Вальда (Wald), в соответствии с которым предлагается выбирать альтернативу, обеспечивающую максимум выигрыша при наихудших условиях. Если, как и прежде обозначить через **F**(X,Y) функцию выигрыша, зависящую от выбора альтернативы X из множества допустимых альтернатив **D**, а через Y - состояние природы из множества возможных состояний **S**, то формальная модель принятия решений будет выглядеть как

Математические модели принятия реше при полной неопределенности

Выбор по Сэвиджу (Savage), в соответствии с которым нужно минимизировать потери от неправильного выбора альтернативы. Строится функция потерь (или как принято говорить функция риска) по правилу

$$\mathbf{R}(X_1,Y) = \max_{X \in \mathbf{D}} \mathbf{F}(X,Y) - \mathbf{F}(X_1,Y),$$

Принцип предполагает минимизацию потерь при неправильном угадывании состояния природы. Формально данная задача сводится к:

Математические модели принятия решений при полной неопределенности

Метод Лапласа (Laplace) предполагает, что если неизвестны вероятности возникновения состояний природы, то их можно считать равновероятными. В соответствии с этим предлагается выбирать альтернативу, обеспечивающую максимальное математическое ожидание выигрыша

$$\max_{X \in \mathbf{D}} \int_{Y \in \mathbf{S}} \mathbf{F}(X,Y) \, dY$$

Если предполагать, что число альтернатив и состояний природы, конечно, то модель принятия решений по Лапласу выглядит следующим образом

$$\max_{i \in 1: d} \sum_{j \in 1: s} F_{ij}/s$$

Математические модели принятия решег при полной неопределенности

Принцип α оптимизма Гурвица (Gurwitz). Основная идея метода состоит в том, что каждый менеджер оценивает для каждой альтернативы только наилучший и наихудший исходы. Кроме того, у него есть субъективная оценка вероятностей наступления наиболее благоприятного (α) и наименее благоприятного (1- α) исходов.

$$G(X, \alpha) = \alpha * \max_{Y \in S} F(X,Y) + (1-\alpha)) * \min_{Y \in S} F(X,Y)$$

В качестве наилучшей при показателе оптимизма **а** выбирается альтернатива, обеспечивающая максимум функции $G(X, \alpha)$, т.е. задача принятия решений сводится к:

$$\underset{X \in \textbf{D}}{\text{max}} \; G(X, \, \alpha)$$

- В качестве основной теоритико-игровой модели рассматривается следующая:
- Имеется N *игроков*, под которыми понимаются предприятия (на рынке), реальные игроки, стороны в военных конфликте, политические партии и т.п. У каждого игрока L (L=1: N) имеется множество допустимых альтернатив DL. *Теоретико-игровой ситуацией* (далее в данном параграфе просто ситуация) называется вектор, компонентами которого являются допустимые альтернативы каждого из игроков, т.е. ситуация это вектор X= (X1, X2,...,XN), где XL (L=1: N) допустимая альтернатива для L-го игрока (т.е._{XL∈ SL}).

- Для каждого игрока L задана на множестве S функция выигрыша FL(X), которую каждый игрок стремится максимизировать.
- В случае если множество альтернатив, у каждого из игроков конечно, функция выигрыша L—го игрока представляет собой N-мерную матрицу, элементы которой FLi1i2...iN определяют результат, получаемый L-м игроком при выборе 1-м игроком своей альтернативы i1, 2-м альтернативы i2, N-м альтернативы iN

• Стремясь максимизировать выигрыш, каждый игрок может оперировать только своими стратегиями, что определяет основной принцип оптимальности для бескоалиционных игр - ситуацию равновесия, в которой каждый из игроков не может улучшить свои результаты за счет собственных действий. Формально ситуация X* называется ситуацией равновесия, если для любого игрока L имеет место

$$\mathbf{F}_{L}(\mathbf{X}^{*}) = \max_{\mathbf{X}_{L} \in \mathbf{S}_{L}} \mathbf{F}_{L}(\mathbf{X}^{*} | \mathbf{X}_{L})$$

где символ | означает, что варьируются только альтернативы L-го L игрока, а выбор других игроков неизменен

- Смешанное расширение. Будем считать, что каждый игрок будет выбирать каждую свою стратегию с некоторой вероятностью, т.е. на множестве стратегий SL будет задано какое-то вероятностное распределение pL(X). Это распределение называется смешанной стратегией. Множеством смешанных стратегий PL является множество всех вероятностных распределений, которые могут быть заданы на SL.
- Ситуацией в смешанных стратегиях называется вектор, компонентами которого являются допустимые смешанные стратегии для каждого из игроков, т.е. ситуация это вектор **p**= (**p**1, **p**2,..., **p**N), где **p**L (L=1: N) допустимая смешанная стратегия для L-го игрока (т.е. **p**L_∈ **P**L).

 Для каждого игрока L задается на множестве Р функция выигрыша ФL(р), которая определяется как

$$\Phi_{L}(\mathbf{p}) = \int_{X \in \mathbf{S}} \mathbf{F}_{L}(X) d\mathbf{p}_{1}(X_{1}) d\mathbf{p}_{2}(X_{2}) \dots d\mathbf{p}_{N}(X_{N})$$

• Ситуация в смешанных стратегиях р* называется ситуацией равновесия, если для любого игрока L имеет место

$$\Phi_{L}(p^{*}) = \max_{p_{L} \in P_{L}} \Phi_{L}(p^{*}|p_{L})$$

- В случае конечного числа альтернатив у каждого из участников множество смешанных стратегий **P**L для каждого из участников определяется как множество векторов **p**L, отвечающих условиям:
- 1) pLi >=0 для любой стратегии і, имеющейся у L-го игрока
- 2) $\sum p_{Li} = 1$

Функция выигрыша L-го игрока в смешанных стратегиях для бескоалиционных игр определяется как

$$\Phi_{L}(\mathbf{p}) = \sum_{i1 \in \mathbf{S}_{1}} \sum_{iN \in \mathbf{S}_{N}} \mathbf{F}_{Li1i2...iN} * \mathbf{p}_{1i1} * \mathbf{p}_{2i2} * ... \mathbf{p}_{NiN}$$

- Бескоалиционная игра двух лиц называется антагонистической, если выигрыш первого игрока равен проигрышу второго.
- Ситуация р* называется ситуацией равновесия в антагонистической игре двух лиц с конечным числом стратегий, если для первого игрока имеет место

$$\Phi_L(\mathbf{p}^*_1, \mathbf{p}^*_2) = \max \quad \min \quad \sum_{\mathbf{p}_1 \in \mathbf{P}_1} \sum_{\mathbf{p}_2 \in \mathbf{P}_2} \sum_{i \in \mathbf{S}_1} \sum_{j \in \mathbf{S}_2} \mathbf{F}_{1ijj}^* \mathbf{p}_{1i} * \mathbf{p}_{2j}$$

Модели принятия решений при партнерстве

В качестве основной модели кооперативной игры рассматривается следующая:

Имеется N игроков, под которыми понимаются предприятия, реальные игроки, различные участники трудового процесса, политические партии и т.п.

Каждый игрок L (L=1: N), действуя самостоятельно, имеет возможность выиграть $\mathbf{V}(L)$.

Игроки могут заключать между собой договора о совместных действиях, или как принято говорить создавать коалиции. Выигрыш коалиции ${\bf K}$ будем обозначать через ${\bf V}({\bf K})$. Предполагается, что

$$V(K) >= \sum_{L \in K} V(L)$$

Модели принятия решений при партнерстве

Основной задачей является распределение выигрыша, полученного общей коалицией **G**. Распределение выигрыша X=(X1,X2,...,XN) между игроками, полученного в общей коалиции принято называть *дележом*, если оно отвечает двум условиям:

- 1. Индивидуальная рациональность XL >= V(L) для каждого игрока L, т.е. в общей коалиции каждый игрок может получить не меньше, чем, действуя самостоятельно.
- 2. Коллективная рациональность $\sum_{L \in \mathbf{G}} XL = \mathbf{V}(\mathbf{G})$, т.е. весь выигрыш $L \in \mathbf{G}$ полученный общей коалицией \mathbf{G} должен быть распределен между участниками.

Модели принятия решений при партнерстве

Одним из подходов к определению рациональных дележей является нахождение **С**-ядра (от английского Core) игры. Считается, что дележ X принадлежит **С**-ядру, если дополнительно к перечисленным выше условиям, он отвечает условию групповой рациональности, которое формулируется как

 $\sum_{L \in \mathbf{K}} XL >= \mathbf{V}(\mathbf{K})$, для любой коалиции **К**.

Дележи, входящие в **С**-ядро, называются устойчивыми дележами, так как ни один из игроков не может отклониться от предлагаемого распределения, расколов общую коалицию. В случае множества дележей в С-ядре рекомендуют выбирать в качестве решения игры центр ядра т.е. дележ максимально удаленный от любой другой точки С-ядра

Модели принятия решений при партнерстве

Для значительного класса игр **С**-ядро является пустым (т.е. не содержит ни одного дележа). Игры с пустым **С**-ядром называются *несбалансированными*.

Для несбалансированных игр, в качестве основы для переговоров о создании общей коалиции, можно предложить так называемые справедливые дележи, которые определяются исходя из задания и формализации принципов (аксиом) справедливости.

Наиболее известным вариантом справедливого дележа является вектор Шепли (Shapley)

Модели принятия решений при Партнерстве Аксиомы вектора Шепли (Shapley):

- 1. Независимости от названия. Величина выигрыша каждого игрока зависит только от его потенциального вклада в действия любой из коалиций, с его участием, а не от номера или названия.
- 2. Независимость от сторонних выигрышей Величина доли выигрыша в данной игре не зависит от размеров выплат, получаемых игроком в других играх.
- 3. Принцип болвана (бесполезного игрока). Игрок, включение которого в любую коалицию не дает больше, чем прибавление его индивидуальный выигрыша, называется болваном. Болван должен получить ровно столько, сколько он может получить, действуя индивидуально.
- 4. Независимость от масштаба шкалы. Величина выигрыша изменяется пропорционально изменению масштаба.
- 5. Независимость от выбора точки отсчета. Величина доли выигрыша L-го игрока изменяется на Н, если выигрыш каждой из коалиций, включающих его, тоже изменяется только на Н.

Вектора Шепли

Шепли было доказано, что во всех играх существует единственный дележ, удовлетворяющий перечисленным выше 5 аксиомам справедливости. Размер выигрыша каждого из игроков определяется по формуле:

$$X_{L} = \sum_{K\supset L} \frac{(N-|K|)!(|K|-1)!}{N!} (V(K)-V(K \setminus L))$$

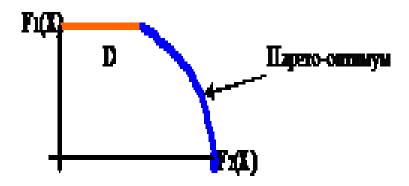
Где **К**- число участников коалиции **К**, **N** – общее число участников в игре. Считается, что выигрыш пустой коалиции равен 0, т.е. $\mathbf{V}(\mathbf{0})=\mathbf{0}$:

- В общем виде задача многокритериальной оптимизации может быть поставлена следующим образом:
- Максимизировать (или минимизировать)
 некоторые функционалы Fj (j=1:M), отражающие
 критерии принятия решений, на множестве
 допустимых альтернатив D. В формульном виде
 эта задача может быть поставлена как

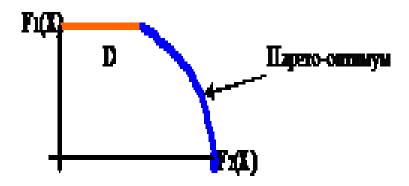
$$\mathbf{F}_{1}(X) \Rightarrow \max$$
 $\mathbf{F}_{2}(X) \Rightarrow \max$

$$\mathbf{F}_{M}(X) \Rightarrow \max$$
 $X \in \mathbf{D}$

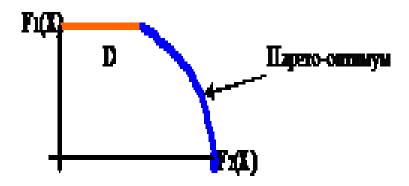
- *оптимум Парето*. Под оптимумом Парето понимается множество альтернатив X из **D**, отвечающих условию:
- не существует другой альтернативы Y из D, для которой
 Fj(Y)>=Fj(X) по всем критериям j (j=1:M) и хотя бы по одному критерию неравенство выполнялось бы как строгое.
- Иногда при принятии решений используется так называемый слабый Парето оптимум. Считается, что альтернатива X из D, является слабо Парето оптимальной, если не существует другой альтернативы Y из D, для которой Fj(Y)>Fj(X) по всем критериям j=1:M.
- Различие между Парето-оптимумом и слабым Парето-оптимумом для двухкритериальной задачи показано на рис.



- *оптимум Парето*. Под оптимумом Парето понимается множество альтернатив X из **D**, отвечающих условию:
- не существует другой альтернативы Y из D, для которой
 Fj(Y)>=Fj(X) по всем критериям j (j=1:M) и хотя бы по одному критерию неравенство выполнялось бы как строгое.
- Иногда при принятии решений используется так называемый слабый Парето оптимум. Считается, что альтернатива X из D, является слабо Парето оптимальной, если не существует другой альтернативы Y из D, для которой Fj(Y)>Fj(X) по всем критериям j=1:M.
- Различие между Парето-оптимумом и слабым Парето-оптимумом для двухкритериальной задачи показано на рис.



- *оптимум Парето*. Под оптимумом Парето понимается множество альтернатив X из **D**, отвечающих условию:
- не существует другой альтернативы Y из D, для которой
 Fj(Y)>=Fj(X) по всем критериям j (j=1:M) и хотя бы по одному критерию неравенство выполнялось бы как строгое.
- Иногда при принятии решений используется так называемый слабый Парето оптимум. Считается, что альтернатива X из D, является слабо Парето оптимальной, если не существует другой альтернативы Y из D, для которой Fj(Y)>Fj(X) по всем критериям j=1:M.
- Различие между Парето-оптимумом и слабым Парето-оптимумом для двухкритериальной задачи показано на рис.



Метод построения сверток.

В соответствии с этим методом до принятия решений собирается количественная информация о важности критериев, т.е. для каждого критерия ј определяется коэффициент важности (вес) ај.

Затем выбирается свертка, которая представляет собой функцию, зависящую как от значений критериев $\mathbf{F}\mathbf{j}(\mathbf{X})$, так и от вектора весов \mathbf{a} . Иначе говоря, свертка - это функция $\mathbf{H}(\mathbf{F}(\mathbf{X}),\mathbf{a})$. Данную функцию и максимизируют на множестве

альтернатив **D**, т.е. $\max H(F(X),a)$

 $X \in \mathbf{D}$

1. Ненормированная линейная свертка

$$\mathbf{H}(\mathbf{F}(\mathbf{X}),\mathbf{a}) = \sum_{\mathbf{j} \in 1:\mathbf{M}} \mathbf{a}_{\mathbf{j}} * \mathbf{F}_{\mathbf{j}}(\mathbf{X}),$$

2. Нормированная линейная свертка

$$\mathbf{H}(\mathbf{F}(\mathbf{X}),\mathbf{a}) = \sum_{\substack{\mathbf{j} \in 1: \mathbf{M} \\ \mathbf{X} \in \mathbf{D}}} \mathbf{a}_{\mathbf{j}} *(\mathbf{F}_{\mathbf{j}}(\mathbf{X}) - \mathbf{F}_{\mathbf{jmin}})/(\mathbf{F}_{\mathbf{jmax}} - \mathbf{F}_{\mathbf{jmin}}),$$

3. Мультипликативная свертка (свертка Нэша).

$$\mathbf{H}(\mathbf{F}(\mathbf{X}),\mathbf{a}) = \prod_{\mathbf{j} \in 1:\mathbf{M}} \mathbf{F}_{\mathbf{j}}(\mathbf{X})^{\wedge}(\mathbf{a}_{\mathbf{j}}),$$

4. Максиминную свертку (свертку Чебышева).

$$\mathbf{H}(\mathbf{F}(\mathbf{X}),\mathbf{a}) = \min_{\mathbf{j} \in 1:\mathbf{M}} (\mathbf{F}_{\mathbf{j}}(\mathbf{X})/\mathbf{a}_{\mathbf{j}},)$$

5. Целевую свертку:

$$H(F(X),a) = -\sum_{j \in 1:M} a_j * |F_{jg} - F_{j}(X)| / q / |F_{jg} - F_{jmin}| / q$$

где $\mathbf{F_{jg}}$ – целевое значение, которого хотелось достичь по критерию j, \mathbf{q} – степень многочлена (\mathbf{q} >1). Чаще всего используется \mathbf{q} =2.

Методы решения многокритериальных задач, опирающиеся на ранговую информацию о важности критериев.

Под ранговой информацией о важности критериев понимают следующие суждения менеджера:

- Группа критериев **T** более значима, чем группа критериев **U** (**T** $\$ **U**) или
- группа критериев T равнозначна группе критериев U ($T \sim U$).

Лексикографическим метод.

Критерии упорядочиваются по важности. Можно предполагать, что первый критерий является самым важным.

1. Для наиболее важного критерия решается однокритериальная задача $\mathbf{F}_{1\max} = \mathbf{max} \, \mathbf{F}_{1} \, (\mathbf{X})$

 $X \in \mathbf{D}$

2. Определяется максимальная уступка **E**1, которая может быть сделана по наиболее важному критерию, для того, чтобы улучшить значения по другим критериям.

$$D(1) = \{X \in D: F1(X) > = F_{1 \text{max}} - E1\}$$

3. Выбирается следующий по значимости критерий (например,2) и для него решается задача оптимизации его на множестве D(1).

Лексикографическим метод.

В общем случае на К-м шаге формируется множество

$$\mathbf{D}(K) = \{X\hat{\mathbf{I}}\mathbf{D}(K-1): \mathbf{F}K(X) > = \mathbf{F}K\max - \mathbf{E}K\},$$

и решается задача

$$\max_{X \in \mathbf{D}(K)} \mathbf{F}_{K+1}(X)$$

Процесс продолжается до тех пор, пока на каком-то из шагов либо не будет получено единственное решение, либо будет исчерпан список критериев

Принятие решений при многих критериях метод ранговых сверток

В соответствии с этим методом выбирается одна из сверток, отвечающая принципу независимости от масштаба шкалы, например, мультипликативная или нормированная линейная свертки. Формируется множество возможных значений коэффициентов важности **A**, построенное по следующему правилу

$$\sum_{j \in 1:M} \mathbf{a_j} = 1,$$

$$\mathbf{a_j} > = 0, \ j \in 1:M,$$

$$\sum_{j \in \mathbf{T}} \mathbf{a_j} = \sum_{j \in \mathbf{U}} \mathbf{a_j}, \ \text{если } \mathbf{T} \sim \mathbf{U}$$

$$\sum_{j \in \mathbf{T}} \mathbf{a_j} > \sum_{j \in \mathbf{U}} \mathbf{a_j}, \ \text{если } \mathbf{T} \ \mathbf{U}$$

Принятие решений при многих критериях Метод ранговых сверток

Определяется оптимум многокритериальной задачи $\mathbf{opt}(\mathbf{F}(\mathbf{D}), \mathbf{A})$ относительно дополнительной информации \mathbf{A} , в который входят все альтернативы X^* из множества допустимых значений \mathbf{D} , отвечающие условиям:

1. Имеется вектор весов a^* из множества A, при котором

$$\mathbf{H}(\mathbf{F}(\mathbf{X}^*),\mathbf{a}^*) = \max_{\mathbf{X} \in \mathbf{D}} \mathbf{H}(\mathbf{F}(\mathbf{X}),\mathbf{a}^*)$$

Альтернатива X* является Парето оптимальной. Полученный оптимум и является решением многокритериальной задачи.

Интерактивные методы решения многокритериальных задач.

- Метод Вулфа П1. Находится произвольная допустимая альтернатива X(1) из множества \mathbf{D} и производится оценка значений критериев $\mathbf{F}(X(1))$.
 - Π 2. Производится оценка значимости критериев в точке X(1).
- ПЗ. Выбирается наименее значимый критерий j^* и формируется множество допустимых альтернатив $\mathbf{D}(1) = \{X \in \mathbf{D} : \mathbf{F}j(X) = \mathbf{F}j(X \ (1)) \}$ для всех критериев j кроме критерия j^* . Определяется значение критерия Fj^* , обеспечивающих решение задачи

 $\max_{X \in \mathbf{D}(1)} \mathbf{F}_{j^*}(X)$

П.4. Менеджеру предлагается оценить, какое изменение $\Delta \mathbf{F}_{j}(X(1))$ критерия j в точке X(1) равноценно увеличению $\Delta \mathbf{F}_{j}*(X(1))=\mathbf{F}_{j}*$ - $\mathbf{F}_{j}*(X(1))$? Подобное сопоставление проводится для всех критериев.

Принятие решений при многих критериях интерактивные методы решения многокритериальных адау. Метод Вулфа П5. Для всех критериев определяются веса ај(X(1))значимости

П5. Для всех критериев определяются веса $a_j(X(1))$ значимости критериев в точке X(1):

$$\mathbf{a}_{j}(\mathbf{X}(1)) = \mathbf{1}/\Delta \mathbf{F}_{j}(\mathbf{X}(1)) / (\sum_{k \in 1 \cdot \mathbf{M}} 1/\Delta \mathbf{F}_{k}(\mathbf{X}))$$

П6. Решается задача

$$\max_{X \in \mathbf{D}} \sum_{j \in 1:M} \mathbf{a}_{j}(X(1)) * \mathbf{F}_{j}(X)) \tag{1}$$

и определяется значения \mathbf{F}_{j*} , соответствующие решению данной задачи.

П7. Находится альтернатива X(2) из множества \mathbf{D} , такая, что для всех критериев j значения

$$F_j(X(2)) = B^*(F_j^*-F_j(X(1))),$$

где B - фиксированное число от 0 до 1 (обычно его выбирают равным 0.5).

П8. В соответствии с процедурой описанной в пунктах 3-5 определяются значения весовых критериев aj(X(2)). Если вектор весовых коэффициентов, не совпадает с вектором весовых коэффициентов aj(X(1)), то переходим к П6, полагая X(1)=X(2).

П9. Проверяется близость вектора $\mathbf{F}(X(2))$ к Парето оптимальной границе. Если расстояние до границы не превышает заранее заданного значения, то в качестве решения многокритериальной задачи принимается вектор, обеспечивающий решение задачи (1). В случае нарушения данного условия переходим к П7, полагая X(1)=X(2).